42 research outputs found

    MaxSR: Image Super-Resolution Using Improved MaxViT

    Full text link
    While transformer models have been demonstrated to be effective for natural language processing tasks and high-level vision tasks, only a few attempts have been made to use powerful transformer models for single image super-resolution. Because transformer models have powerful representation capacity and the in-built self-attention mechanisms in transformer models help to leverage self-similarity prior in input low-resolution image to improve performance for single image super-resolution, we present a single image super-resolution model based on recent hybrid vision transformer of MaxViT, named as MaxSR. MaxSR consists of four parts, a shallow feature extraction block, multiple cascaded adaptive MaxViT blocks to extract deep hierarchical features and model global self-similarity from low-level features efficiently, a hierarchical feature fusion block, and finally a reconstruction block. The key component of MaxSR, i.e., adaptive MaxViT block, is based on MaxViT block which mixes MBConv with squeeze-and-excitation, block attention and grid attention. In order to achieve better global modelling of self-similarity in input low-resolution image, we improve block attention and grid attention in MaxViT block to adaptive block attention and adaptive grid attention which do self-attention inside each window across all grids and each grid across all windows respectively in the most efficient way. We instantiate proposed model for classical single image super-resolution (MaxSR) and lightweight single image super-resolution (MaxSR-light). Experiments show that our MaxSR and MaxSR-light establish new state-of-the-art performance efficiently

    Efficient Single Image Super-Resolution Using Dual Path Connections with Multiple Scale Learning

    Full text link
    Deep convolutional neural networks have been demonstrated to be effective for SISR in recent years. On the one hand, residual connections and dense connections have been used widely to ease forward information and backward gradient flows to boost performance. However, current methods use residual connections and dense connections separately in most network layers in a sub-optimal way. On the other hand, although various networks and methods have been designed to improve computation efficiency, save parameters, or utilize training data of multiple scale factors for each other to boost performance, it either do super-resolution in HR space to have a high computation cost or can not share parameters between models of different scale factors to save parameters and inference time. To tackle these challenges, we propose an efficient single image super-resolution network using dual path connections with multiple scale learning named as EMSRDPN. By introducing dual path connections inspired by Dual Path Networks into EMSRDPN, it uses residual connections and dense connections in an integrated way in most network layers. Dual path connections have the benefits of both reusing common features of residual connections and exploring new features of dense connections to learn a good representation for SISR. To utilize the feature correlation of multiple scale factors, EMSRDPN shares all network units in LR space between different scale factors to learn shared features and only uses a separate reconstruction unit for each scale factor, which can utilize training data of multiple scale factors to help each other to boost performance, meanwhile which can save parameters and support shared inference for multiple scale factors to improve efficiency. Experiments show EMSRDPN achieves better performance and comparable or even better parameter and inference efficiency over SOTA methods.Comment: 21 pages, 9 figures, 5 table
    corecore